BIOL 3000 Project 1: People Walk at Different Speeds

Group Members: Ainsley B., Hannah G., Hannah M., Ben S., Ella C., and Elissa O.

Presenters: Ella C. and Elissa O.

HYPOTHESIS

Hypothesis 1:

People's energy levels influence walking speed.

Hypothesis 2:

Walking speed is influenced by level of distraction.

Hypothesis 3:

The location someone is walking in will influence their walking speed.

PREDICTIONS

Prediction 1:

People are more energetic in the morning, so walking speed will decrease throughout the day (Kawai et al., 2021).

Prediction 2:

Walking speed will increase if people are not distracted by talking to others, by a large group, or by their phone (Moussaid et al., 2010; Wang et al., 2022).

Prediction 3:

Walking speeds will be faster outdoors when compared to walking speeds indoors (Willen et al., 2013; Murtagh et al., 2021).

METHODS

- 1. Identify two locations to measure walking time (outside and inside).
- Measure distance between point A and B.
- Observe people walking at both locations for 20 min in the morning, afternoon, and evening.
- 4. Measure the time it takes people chosen at random to walk from point A to point B.
- 5. Record if people walking are not distracted or distracted (in a group or on phone).
- 6. Calculate walking speed (m/s).

Figure 1. Data collection sheet.

RESULTS: Time of Day

- Walking speed decreased very slightly throughout the day.
- Regression analysis confirmed a non-linear relationship by an R² of 0.01161.
- A p-value of 0.1093 meant the null hypothesis could not be rejected, confirming there was no significant difference between walking speed over time.
- Large spread in data for each time point indicated another variable was likely influencing walking speed.

Figure 2. Walking speed as time since 8:00 am increases.

RESULTS: Distracted or Not

- Distraction level influences walking speed.
- Distracted mean walking speed: 1.30 m/s.
- Non-distracted mean walking speed: 1.50 m/s.
- Two sample t-test:

t = 6.4903

t-value > 1.96

 Mean walking speed of distracted people was significantly slower than nondistracted people.

Figure 3. Walking speed with different distraction levels.

RESULTS: Inside or Outside

- Walking speed, on average, was higher inside (n=102) than outside (n=120).
- Mean walking speed inside: 1.46 m/s
- Mean walking speed outside: 1.40 m/s
- Larger spread among speeds recorded inside.
- Two sample T-test:
 T-value: 1.7789 (< 1.96)
- Mean walking speed outside was not statistically different from mean walking speed inside.

Figure 4. Walking speed in m/s measured at two locations, inside and outside.

MAIN TAKEAWAYS

distraction levels.

- 1. Hypothesis that energy level influences walking speed was not supported.
- 2. Hypothesis that location influences walking speed was not supported.
- 3. Hypothesis that distraction level influences walking speed was supported.

Future Analyses:

Since distraction level affects walking speed, participants who were distracted should be excluded from analyses examining the effects of location or time of day.

Figure 6. Walking speed throughout the day with different distraction levels.

Time Since 8:00 am (hours)

REFERENCES

- Kawai, H., Obuchi, S., Hirayama, R. *et al.* Intra-day variation in daily outdoor walking speed among community-dwelling older adults. *BMC Geriatr* **21**, 417 (2021). https://doi.org/10.1186/s12877-021-02349-w
- Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). The walking behaviour of pedestrian social groups and its impact on crowd dynamics. *PloS one*, 5(4), e10047.
 https://doi.org/10.1371/journal.pone.0010047
- Murtagh, E.M., Mair, J.L., Aguiar, E. et al. Outdoor Walking Speeds of Apparently Healthy Adults: A
 Systematic Review and Meta-analysis. Sports Med 51, 125–141 (2021).
 https://doi.org/10.1007/s40279-020-01351-3
- Wang, H., Li, D., Wang, Q., Schwebel, D. C., Miao, L., Shen, Y. How distraction affects pedestrian response: Evidence from behavior patterns and cortex oxyhemoglobin changes. *Traffic Psychology and Behaviour* **91**, 414-430 (2022). https://doi.org/10.1016/j.trf.2022.10.026
- Willen, C., Lehmann, K., & Sunnerhagen, K. (2013). Walking Speed Indoors and Outdoors in Healthy Persons and in Persons With Late Effects of Polio. *Journal Of Neurology Research, 3*(2), 62-67. https://doi.org/10.4021/jnr187w